Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Braz. j. biol ; 82: 1-9, 2022. ilus, tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1468536

ABSTRACT

Since the classic studies of Alexander Flemming, Penicillium strains have been known as a rich source of antimicrobial substances. Recent studies have identified novel metabolites produced by Penicillium sclerotiorum that have antibacterial, antifouling and pharmaceutical activities. Here, we report the isolation of a P. sclerotiorum (LM 5679) from Amazonian soil and carry out a culture-based study to determine whether it can produce any novel secondary metabolite(s) that are not thus-far reported for this genus. Using a submerged culture system, secondary metabolites were recovered by solvent extract followed by thin-layer chromatography, nuclear magnetic resonance, and mass spectroscopy. One novel secondary metabolite was isolated from P. sclerotiorum (LM 5679); the phenolic compound 5-pentadecyl resorcinol widely known as an antifungal, that is produced by diverse plant species. This metabolite was not reported previously in any Penicillium species and was only found once before in fungi (that time, in a Fusarium). Here, we discuss the known activities of 5-pentadecyl resorcinol in the context of its mode-of-action as a hydrophobic (chaotropicity-mediated) stressor.


Desde os estudos clássicos de Alexander Flemming, as cepas de Penicillium são conhecidas como uma fonte rica em substâncias antimicrobianas. Estudos recentes identificaram novos metabólitos produzidos pela espécie Penicillium sclerotiorum com atividades antibacteriana, anti-incrustante e farmacêutica. Aqui, relatamos o isolamento de uma colônia de P. sclerotiorum (LM 5679) do solo amazônico e relatamos também o estudo baseado em cultura para determinar se ele pode produzir qualquer novo metabólito (s) secundário (s) que não foram relatados até agora para este gênero. Usando um sistema de cultura submerso, os metabólitos secundários foram recuperados por extrato de solvente seguido por cromatografia em camada delgada, ressonância magnética nuclear e espectroscopia de massa. Um novo metabólito secundário foi isolado de P. sclerotiorum (LM 5679); o composto fenólico 5-pentadecil resorcinol que é amplamente conhecido como um antifúngico que é produzido por diversas espécies de plantas. Este metabólito não foi relatado anteriormente em nenhuma espécie de Penicillium, e foi encontrado apenas uma vez em fungos (Fusarium). Aqui, discutimos as atividades conhecidas do 5-pentadecil resorcinol no contexto de seu modo de ação como um estressor hidrofóbico (mediado pela caotropicidade).


Subject(s)
Antifungal Agents/isolation & purification , Phenolic Compounds/analysis , Penicillium/chemistry , Fusarium
2.
Braz. j. microbiol ; 49(1): 169-176, Jan.-Mar. 2018. tab, graf
Article in English | LILACS | ID: biblio-889211

ABSTRACT

ABSTRACT Major health challenges as the increasing number of cases of infections by antibiotic multiresistant microorganisms and cases of Alzheimer's disease have led to searching new control drugs. The present study aims to verify a new way of obtaining bioactive extracts from filamentous fungi with potential antimicrobial and acetylcholinesterase inhibitory activities, using epigenetic modulation to promote the expression of genes commonly silenced. For such finality, five filamentous fungal species (Talaromyces funiculosus, Talaromyces islandicus, Talaromyces minioluteus, Talaromyces pinophilus, Penicillium janthinellum) were grown or not with DNA methyltransferases inhibitors (procainamide or hydralazine) and/or a histone deacetylase inhibitor (suberohydroxamic acid). Extracts from T. islandicus cultured or not with hydralazine inhibited Listeria monocytogenes growth in 57.66 ± 5.98% and 15.38 ± 1.99%, respectively. Increment in inhibition of acetylcholinesterase activity was observed for the extract from P. janthinellum grown with procainamide (100%), when compared to the control extract (39.62 ± 3.76%). Similarly, inhibition of acetylcholinesterase activity increased from 20.91 ± 3.90% (control) to 92.20 ± 3.72% when the tested extract was obtained from T. pinophilus under a combination of suberohydroxamic acid and procainamide. Concluding, increases in antimicrobial activity and acetylcholinesterase inhibition were observed when fungal extracts in the presence of DNA methyltransferases and/or histone deacetylase modulators were tested.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cholinesterase Inhibitors/pharmacology , Penicillium/chemistry , Talaromyces/chemistry , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/metabolism , Chromatin/metabolism , Listeria monocytogenes/drug effects , Listeria monocytogenes/enzymology , Listeria monocytogenes/growth & development , Penicillium/metabolism , Talaromyces/metabolism
3.
Indian J Exp Biol ; 2013 Nov; 51(11): 984-991
Article in English | IMSEAR | ID: sea-149407

ABSTRACT

Ten Penicillium sp. were screened for lectin activity for occurrence of lectins. Mycelial extracts from submerged cultures of P. corylophilum, P. expansum and P. purpurogenum showed agglutination against human (A, B, AB and O), goat, sheep, pig and rabbit erythrocytes. Neuraminidase treatment to human blood type O erythrocytes substantially increased their agglutinability by all the lectins as compared to untreated erythrocytes. Modification of erythrocyte surfaces by protease increased the lectin titre only of P. corylophilum with no effect on other two lectins. P. corylophilum and P. expansum displayed relatively lower titres in mycelial extracts prepared from agar plate cultures as compared to broth cultures. A panel of sugars was tested for inhibition of lectin activity. All the lectins were found to be specific for asialofetuin, bovine submaxillary mucin, porcine stomach mucin, chondroitin-6-sulphate, D-sucrose and D-glucose. P. corylophilum lectin was expressed (Titre 8) by 5 day old cultures, reaching its maximum level (Titre 32) upon 8 days of cultivation, thereafter declin in lectin activity was observed. P. purpurogenum lectin was expressed by 7-10 days old cultures, while in P. expansum maximum lectin activity was elaborated by 5-8 days old cultures. Lectin extracts from all the three species were found to possess antimicrobial activities. Lectin extracts from the three Penicillium species displayed antifungal activity and antibacterial activity against Gram-negative and Gram-positive bacterial strains.


Subject(s)
Anti-Infective Agents/pharmacology , Hemagglutination Tests , Lectins/pharmacology , Microbial Sensitivity Tests , Penicillium/chemistry , Penicillium/classification , Species Specificity
4.
Indian J Exp Biol ; 2000 Jan; 38(1): 56-62
Article in English | IMSEAR | ID: sea-57950

ABSTRACT

Siderophores of twenty fungi belonging to Zygomycotina (5 Mucorales), Ascomycotina (7 aspergilli, 6 penicillia, Neurospora crassa) and Deuteromycotina (Fusarium dimerum) were examined for their chemical nature. Siderophores produced by fungi other than Mucorales were all hydroxamates. Mucorales produced carboxylate siderophores. Catecholate type of siderophores were not detectable. Hydroxamate siderophores were mostly (9 out of 15) trihydroxamates, while six were dihydroxamates. Monohydroxamate nature was not shown by any of the 15 test fungal siderophores. In ligand properties, 12 out of 15 hydroxamate siderophores formed hexadentate ligands, while two formed tetradentates and one bidentate. There was good correlation between number of hydroxamate groups and ligand property.


Subject(s)
Aspergillus/chemistry , Carboxylic Acids/chemistry , Fungi/chemistry , Fusarium/chemistry , Hydroxamic Acids/chemistry , Mucorales/chemistry , Neurospora crassa/chemistry , Penicillium/chemistry , Siderophores/chemistry , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL